225 research outputs found

    Groene Hart met landbouw naar een hoger peil? Over de vraag of verhoging van waterpeil kan samengaan met verhoging van ruimtelijke kwaliteit

    Get PDF
    Kan verhoging van het waterpeil in de veenweidegebieden bij de Randstad samengaan met een integrale verhoging van ruimtelijke kwaliteit? In dit rapport worden eerst de resultaten weergegeven van een kwantitatief onderzoek naar de invloed van hogere waterpeilen op landbouwinkomens en op het geheel van ruimtelijke kwaliteiten (economisch, ecologisch en sociaal). Vervolgens biedt het rapport een kwalitatieve verkenning van mogelijkheden tot systeeminnovatie waardoor (verbrede) melkveebedrijven de dragers van het Groene Hart kunnen blijven. Dit kwalitatieve deel wordt ter illustratie uitgewerkt voor het centrale deel van het veenweidegebied (Meije-Zegveld)

    Distance Estimation Is Influenced by Encoding Conditions

    Get PDF
    Background:\ud It is well established that foveating a behaviorally relevant part of the visual field improves localization performance as compared to the situation where the gaze is directed elsewhere. Reduced localization performance in the peripheral encoding conditions has been attributed to an eccentricity-dependent increase in positional uncertainty. It is not known, however, whether and how the foveal and peripheral encoding conditions can influence spatial interval estimation. In this study we compare observers' estimates of a distance between two co-planar dots in the condition where they foveate the two sample dots and where they fixate a central dot while viewing the sample dots peripherally.\ud \ud Methodology/Principal Findings:\ud Observers were required to reproduce, after a short delay, a distance between two sample dots based on a stationary reference dot and a movable mouse pointer. When both sample dots are foveated, we find that the distance estimation error is small but consistently increases with the dots-separation size. In comparison, distance judgment in peripheral encoding condition is significantly overestimated for smaller separations and becomes similar to the performance in foveal trials for distances from 10 to 16 degrees.\ud \ud Conclusions/Significance:\ud Although we find improved accuracy of distance estimation in the foveal condition, the fact that the difference is related to the reduction of the estimation bias present in the peripheral conditon, challenges the simple account of reducing the eccentricity-dependent positional uncertainty. Contrary to this, we present evidence for an explanation in terms of neuronal populations activated by the two sample dots and their inhibitory interactions under different visual encoding conditions. We support our claims with simulations that take into account receptive fields size differences between the two encoding conditions

    Industrial Process Design for the Production of Aniline by Direct Amination

    Get PDF
    The objective is to design a plant from raw material to product for the production of aniline by direct amination of benzene. The process design is started on a conceptual level and ended on a basic engineering level as well as a techno-economical evaluation. The amination of benzene by hydroxylamine was used as basis. For the production of hydroxylamine four routes are proposed. The most promising route is the chemical reduction of nitric oxide with hydrogen. The process evaluation shows that 27 % of the atomic nitrogen is lost. The atomic carbon efficiency is close to unity. Furthermore, a significant amount of steam can be produced. From an economical perspective, there is still room for improvement because the return of investment is quite low and the payback period is quite high

    Changing our minds about changes of mind

    Get PDF

    The industrial production of dimethyl carbonate from methanol and carbon dioxide

    Get PDF
    This work discusses the design of a dimethyl carbonate (DMC) production plant based on methanol and CO2 as feed materials, which are a cheap and environment-friendly feedstock. DMC is a good alternative for methyl-tert-butyl ether (MTBE) as a fuel oxygenating agent, due to its low toxicity and fast biodegradability. Based on the MTBE demand of a general gasoline plant, the annual production capacity of the process design is stipulated to be 86 kt DMC, with a purity of 99 wt%. Three routes are proposed to form DMC: 1) direct synthesis from methanol and CO2, 2) reaction of CO2 and ammonia to urea, which can be converted to DMC with methanol, 3) reaction of ethylene oxide with CO2 to a cyclic carbonate, which can be converted to DMC by transesterification with methanol. From a black box cost analysis based on raw material prices, it is concluded that the ethylene oxide route is the least profitable. Because of higher single-pass conversions found in literature, smaller recycles and easier separations, it is concluded that the urea route would be the most feasible. The required process functions for the urea route have been determined in the conceptual design phase. A detailed design of the most important process operations is made and an overall technical and economic evaluation of the process has been carried out. In the first step of this DMC synthesis, urea is produced from carbon dioxide and ammonia with the ACES21 process. After separation and purification steps, urea is fed to a reactor with methanol (150 °C, 20 bar), where methyl carbamate (MC), an intermediate of DMC production, and ammonia are formed in the absence of a catalyst. Subsequently, MC and methanol are converted to DMC and ammonia (190 °C, 40 bar) over a ZnO-Al2O3 catalyst in a fixed-bed reactor. Methanol and DMC form an azeotrope; extractive distillation with methyl isobutyl ketone (MIBK) as entrainer is used to separate the azeotropic mixture. The reactor model for the reaction towards DMC based on kinetic rate expressions, showed that a long residence time (>10 h) and a relatively high MeOH:MC molar feed ratio of 6 are required to achieve reasonable single-pass conversions (15 %). This resulted however in an unrealistically large reactor volume and a large methanol load on the process. A feasibility study was done in order to improve the performance of the process. It was calculated that with a MeOH:MC ratio of 2 and a single-pass conversion of MC of 30 % the process would become technically feasible; the reactor volume decreased from 5,000 m3 to 600 m3 and the energy consumption of the process was decreased from 238 MW to 50 MW. A Pinch analysis showed that maximally 6 MW could be saved with heat integration, which corresponds to approximately 2 M/ysavingsonenergycosts.Toproduce86kt/yofDMC,therequiredamountsofrawmaterialsare80kt/yofmethanoland58kt/yofCO2,whichresultsinanoverallDMCyieldfrommethanolof38/y savings on energy costs. To produce 86 kt/y of DMC, the required amounts of raw materials are 80 kt/y of methanol and 58 kt/y of CO2, which results in an overall DMC yield from methanol of 38 %. The required total capital investment of the process is 110 M. Economic feasibility depends on the DMC selling price. A price range between 800 and 1,100 /twasassumed.For800/t was assumed. For 800 /t it is not possible to repay the capital investment within an assumed lifetime of 10 years and the process would therefore not be profitable. The break-even point is at 845 /t.Forasellingpriceof1,100/t. For a selling price of 1,100 /t the gross profit becomes 22 M$/y, with a payback period of 3 years and a return on investment of 20 %

    Halfvortices in flat nanomagnets

    Full text link
    We discuss a new type of topological defect in XY systems where the O(2) symmetry is broken in the presence of a boundary. Of particular interest is the appearance of such defects in nanomagnets with a planar geometry. They are manifested as kinks of magnetization along the edge and can be viewed as halfvortices with winding numbers \pm 1/2. We argue that halfvortices play a role equally important to that of ordinary vortices in the statics and dynamics of flat nanomagnets. Domain walls found in experiments and numerical simulations are composite objects containing two or more of these elementary defects. We also discuss a closely related system: the two-dimensional smectic liquid crystal films with planar boundary condition.Comment: 7 pages, 8 figures, To appear as a chapter in Les Houches summer school on Quantum Magnetis

    Hexb enzyme deficiency leads to lysosomal abnormalities in radial glia and microglia in zebrafish brain development

    Get PDF
    Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by β-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb−/− ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb−/− zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb−/− ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo
    • …
    corecore